Applying Machine Learning to Catalogue Matching in Astrophysics
نویسندگان
چکیده
We present the results of applying automated machine learning techniques to the problem of matching different object catalogues in astrophysics. In this study we take two partially matched catalogues where one of the two catalogues has a large positional uncertainty. The two catalogues we used here were taken from the HI Parkes All Sky Survey (HIPASS), and SuperCOSMOS optical survey. Previous work had matched 44% (1887 objects) of HIPASS to the SuperCOSMOS catalogue. A supervised learning algorithm was then applied to construct a model of the matched portion of our catalogue. Validation of the model shows that we achieved a good classification performance (99.12% correct). Applying this model, to the unmatched portion of the catalogue found 1209 new matches. This increases the catalogue size from 1887 matched objects to 3096. The combination of these procedures yields a catalogue that is 72% matched.
منابع مشابه
Applying the Support Vector Machine Method to Matching IRAS and SDSS Catalogues
This paper presents results of applying a machine learning technique, the Support Vector Machine (SVM), to the astronomical problem of matching the Infra-Red Astronomical Satellite (IRAS) and Sloan Digital Sky Survey (SDSS) object catalogues. In this study, the IRAS catalogue has much larger positional uncertainties than those of the SDSS. A model was constructed by applying the supervised lear...
متن کاملMatching of Catalogues by Probabilistic Pattern Classification
We consider the statistical problem of catalogue matching from a machine learning perspective with the goal of producing probabilistic outputs, and using all available information. A framework is provided that unifies two existing approaches to producing probabilistic outputs in the literature, one based on combining distribution estimates and the other based on combining probabilistic classifi...
متن کاملارائه الگوریتم شناسایی ستاره بر مبنای رأیگیری هندسی به منظور استفاده در ردیابهای ستارهای
Star identification is one of the most important stages in attitude determination with star trackers. This can be performed using matching algorithms between observed stars and a master star catalogue. The main challenge in this approach is to provide a fast and reliable identification algorithm that is sufficiently robust in different pointing views of the star tracker optical system in the sp...
متن کاملThe machine learning process in applying spatial relations of residential plans based on samples and adjacency matrix
The current world is moving towards the development of hardware or software presence of artificial intelligence in all fields of human work, and architecture is no exception. Now this research seeks to present a theoretical and practical model of intuitive design intelligence that shows the problem of learning layout and spatial relationships to artificial intelligence algorithms; Therefore, th...
متن کاملMachine learning based Visual Evoked Potential (VEP) Signals Recognition
Introduction: Visual evoked potentials contain certain diagnostic information which have proved to be of importance in the visual systems functional integrity. Due to substantial decrease of amplitude in extra macular stimulation in commonly used pattern VEPs, differentiating normal and abnormal signals can prove to be quite an obstacle. Due to developments of use of machine l...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2005